• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

Weatherboy

Weatherboy Weather News, Maps, RADAR, Satellite, and Forecasts.

  • Local
  • Earth Science News
  • RADAR
  • Current Warnings
  • Satellite
  • Current Maps
  • Forecast Maps
  • Video

Geomagnetic Storm Watch Issued for Earth; Impacts Possible Thursday

by Weatherboy Team Meteorologist - July 18, 2022

NASA equipment can help scientists determine the impacts from coronal holes. Image: NASA
NASA equipment can help scientists determine the impacts from coronal holes. Image: NASA

According to NOAA’s Space Weather Prediction Center (SWPC), a  G1-class geomagnetic storm is forecast to impact the planet on Thursday, July 21.

In their latest forecast discussion, the SWPC said that quiet to unsettled conditions are likely through tomorrow, with increasing levels of activity on Wednesday prior to Thursday’s likely geomagnetic storming. A slow-moving coronal mass ejection (CME) that leapt off the Sun on Friday, July 15, is responsible for this geomagnetic storm activity.

Coronal Mass Ejections (CMEs) are large expulsions of plasma and magnetic field from the Sun’s corona. They can eject billions of tons of coronal material and carry an embedded magnetic field, frozen in flux, that is stronger than the background solar wind interplanetary magnetic field (IMF) strength. CMEs travel outward from the Sun at various speeds, with some reaching the Earth as quickly as 15-18 hours and others requiring days to arrive. According to the SWPC, CMEs expand in size as they propagate away from the Sun and larger ones can reach a size comprising nearly a quarter of the space between Earth and the Sun by the time it reaches our planet.

As the CME interacts with Earth and its magnetosphere, a variety of things could unfold based on the amount of energy hitting and the angle it impacts the Earth.

 




The GOES-16 weather satellite captured this image of the M-class flare that erupted off the Sun earlier today. Image: NOAA
The GOES-16 weather satellite is one tool space weather experts use to monitor the Sun’s activity. Image: NOAA

Geomagnetic storms are rated on a 1-5 scale by the SWPC, with 1 considered minor and 5 considered extreme. Geomagnetic storms can disrupt electronics and electrical systems, interfere with spacecraft and satellite communication, and also trigger brilliant displays of the aurora in the night sky.

In the case of the G1 class storm due to hit Earth this week, weak power grid fluctuations could occur, especially at northern latitudes. Minor impacts on satellite operations could also be possible.  Aurora could also be visible more south than it usually is; in this case, it could extend as far south as northern Michigan and Maine. Should the geomagnetic storm become stronger, aurora could be brighter and could appear even more south.

 

Chart showing NOAA Space Weather Scales for Geomagnetic Storms. Image: NOAA
Chart showing NOAA Space Weather Scales for Geomagnetic Storms. Image: NOAA

 

 

The Sun is constantly churning material and magnetic fields which create an ever-changing landscape of features that last from milliseconds to days. NASA developed this infographic to illustrate a few of the most common features that can be seen on the Sun. Image: NASA/Mary Pat Hrybyk-Keith
The Sun is constantly churning material and magnetic fields which create an ever-changing landscape of features that last from milliseconds to days. NASA developed this infographic to illustrate a few of the most common features that can be seen on the Sun.
Image: NASA/Mary Pat Hrybyk-Keith

 




 

 

The Northern Lights could come to life in a brilliant way on Labor Day as a solar wind is forecast to impact Earth.
The Northern Lights could come to life in a brilliant way in places more south than usual during the Geomagnetic Storm.

NOAA forecasters analyze a variety of solar data from spacecraft to determine what impacts a geomagnetic storm could produce.   Analyzing data from the DSCOVER and ACE satellite is one way forecasters can tell when the enhanced solar wind from a coronal hole is about to arrive at Earth. A few things they look for in the data to determine when the enhanced solar wind is arriving at Earth:

• Solar wind speed increases
• Temperature increases
• Particle density decreases
• Interplanetary magnetic field (IMF) strength increases

While these solar events can help illuminate the sky with stunning aurora, they can also do considerable harm to electronics, electrical grids, and satellite and radio communications.

A solar eruption seen by the SOHO spacecraft on July 24, 1999, with Earth inserted to give a sense of scale to the blast. Image: ESA / SOHO / EIT
A solar eruption seen by the SOHO spacecraft on July 24, 1999, with Earth inserted to give a sense of scale to the blast. Image: ESA / SOHO / EIT

The 1859 incident, which occurred on September 1-2 in 1859, is also known as the “Carrington Event.” This event unfolded as  powerful geomagnetic storm struck Earth during Solar Cycle 10. A CME hit the Earth and induced the largest geomagnetic storm on record.  The storm was so intense it created extremely bright, vivid aurora throughout the planet: people in California thought the sun rose early, people in the northeastern U.S. could read a newspaper at night from the aurora’s bright light, and people as far south as Hawaii and south-central Mexico could see the aurora in the sky.




The event severely damaged the limited electrical and communication lines that existed at that time; telegraph systems around the world failed, with some telegraph operators reporting they received electric shocks.

Artist rendering of the Parker Solar Probe in space. Image: NASA
Artist rendering of the Parker Solar Probe in space, one of the assets scientists use to better understand solar activity and their impacts to Earth . Image: NASA

A June 2013 study by Lloyd’s of London and Atmospheric and Environmental Research (AER) in the U.S. showed that if the Carrington event happened in modern times, damages in the U.S. could exceed $2.6 trillion, roughly 15% of the nation’s annual GDP.

While typically known for their weather forecasts, the National Oceanic and Atmospheric Administration (NOAA) and its National Weather Service (NWS) is also responsible for “space weather.” While there are private companies and other agencies that monitor and forecast space weather, the official source for  alerts and warnings of the space environment is the Space Weather Prediction Center (SWPC). The SWPC is located in Boulder, Colorado and is a service center of the NWS, which is part of NOAA. The Space Weather Prediction Center is also one of nine National Centers for Environmental Prediction (NCEP) as they monitor current space weather activity 24/7, 365 days a year.

 

Primary Sidebar

Sponsored Ad

Search

Latest News

  • Igloo Cooler Recalled Due to Amputation / Crushing Threat
  • Longtime TV Meteorologist Fired
  • Spacecraft Launched by Soviet Union in 1972 Crashed Back on Earth Today
  • Strong Tennessee Earthquake Reported by 35,000+ People
  • Updated Crash Forecast Puts Eastern U.S. on Alert from Soviet Union Spacecraft
  • Soviet Union Spacecraft Crash Zones Updated; NJ/NY/PA/MI at Increased Risk
  • Over 2,000 People Report Shaking from Virginia Earthquake
  • Morning Earthquake Strikes Heart of New Madrid Seismic Zone in Missouri Today
About | Careers | Contact | Contests
Terms | Privacy | Ad Choices
Weatherboy is a (R) Registered Trademark of isarithm LLC, All Rights Reserved.
All content herein is Copyright by Isarithm LLC 1997-2022